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Abstract

The terrestrial component of climate models requires computationally efficient algorithms for determining the multi-
scattered radiation contributing to its heating from solar radiation. Much of the vegetated land cover has strong 3D con-
trols on its radiation. The scattering from a 3D object of isotropic scatters is formulated abstractly and an approach to
solution is described in the context of a spherical object. A Laplace integral representation of the 3D integral equation
for radiative transfer is discretized. Such discretization provides the solution in terms of solutions to 3D Helmholtz equa-
tions, a single such equation in the lowest order approach. A Green’s function approximate solution along the paths of
entering and exiting radiation is integrated over such radiation for the paths assumed to coincide except for direction.
The resulting approximate description of multi-scattered radiation corresponds to replacing the 3D scattering paths with
a 1D path with attenuation amplified by a diffusivity factor. This description combines with previously derived analytic
solutions for single scattered radiation to provide an efficient representation of the bidirectional scattering from the 3D
object, intended for use in climate models and remote sensing.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The terrestrial component of climate models addresses the physics of energy and water exchanges at the
land surface. In particular, it calculates the balance between net radiative heating and turbulent fluxes of latent
and sensible heat [1]. The radiative forcing is in part determined by transmission through the atmosphere of
solar radiation incident at the top of the atmosphere. It also involves exchanges of thermal radiation and the
determination of how much solar radiation is reflected back toward the atmosphere. It is the latter topic that is
addressed here. Similar issues are encountered in treating the effects of clouds in the atmosphere [2].

Climate models do direct computation on time scales from tens of minutes to centuries. Furthermore, they
do these computations on a global mesh with as high resolution as feasible and treat as many physical details
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as possible. With the advent of global quantitative derivation of terrestrial properties by remote sensing, it is in
principle possible to calculate the global terrestrial system with a resolution as fine as one kilometer. Thus only
computationally very simple algorithms, such as evaluation of a small number of exponentials, may be prac-
tical to use for describing the terrestrial system in climate models.

Solar radiation after passing through the atmosphere arrives either in the form of direct beam or dif-
fuse, that is after molecular (Rayleigh) or particulate scattering from cloud or aerosol droplets. This radi-
ation passes through vegetation canopies to reach the surface and is either absorbed by the canopy or
surface or is reflected back to the atmosphere, e.g. [3]. The treatment of the radiation passing through
vegetation canopies is complicated by the presence of multiple levels of organization, from that of the
chloroplast cells to that of the arrangement of individual plants within the landscape. Thus, a comprehen-
sive treatment of all the radiative details within a 1 km2 plot of land could easily require by itself enor-
mous computation. How can we reduce the computation of terrestrial radiation to something very simple
but still adequately realistic?

Radiation interacting at multiple scales of organization can be addressed with an adding principle. Each
level is summarized by its ‘‘input–output”. That is, since the incident radiation is of external origin, it arrives
at the outside of an object, enters in and some fraction again exits in various directions. The description of this
exiting radiation for a given input is referred to as ‘‘optical properties”. The optical properties of a plant cell
can be used to construct the optical properties of a leaf and the latter can be used to construct optical prop-
erties at higher levels of organization up to that of the canopy.

The scattering objects that are considered in treating radiation within a canopy are generally not opaque.
Radiation both reflects from a leaf surface and is transmitted diffusely through it. However, this scattering at
leaf level is commonly asymmetric, i.e., the fraction of incident light reflected from the surface of a thick leaf
differs from that transmitted. Scattering from leaves is further complicated by the geometry of leaf orientation
which is commonly characterized by a statistical distribution.

These leaf optical properties have been successfully included for homogeneous canopies (i.e., no higher
level of organization) at the computational level useful in climate models. For this purpose, the scattered
radiation has been conceptualized as consisting of discrete streams, e.g. 2-stream [3–5], or 4-stream [4,6,7]
or alternatively, been represented by polynomials in the cosine of their angle made by the direction of the
radiative flux relative to same reference direction, e.g. the vertical. These approaches are low order numer-
ical discretizations of the continuous directionality of scattered radiation. They describe the scattering
from terrestrial vegetation with the computational simplicity needed for a climate model and with accept-
able discretization error [6]. They are not able to explicitly address any of the additional complexity of the
geometric organization of systems at lower levels in the hierarchy, in particular that of individual trees or
bushes.

For some climatically important questions, differences in the geometric properties of the trees arguably
exert more control on the absorption and reflection of radiation than do the properties of the individual
leaves. The effects of the woody components (i.e., trunks and branches) can also be substantial. Consequently,
the terrestrial remote sensing community has recognized the importance of including 3D geometric effects.
This complexity has been included through computationally intensive numerical modeling that represents
the radiative properties of a canopy in terms of lookup tables for assumed canopy shapes but with the pro-
jected leaf area index (LAI) treated as a variable [7,8]. The most flexible and realistic treatment of canopy radi-
ation for a particular set of parameters is that of ‘‘Monte-Carlo” since any and all geometrical configurations
can be included in the context of statistical choices. Several such codes and other more complex 3D treatments
have been compared in ‘‘RAMI” [9] One possible approach to the simplification needed for a climate model is
to use such relatively exact (and computationally intensive) computation to select parameters of a simple
model. This approach has been studied [10] for fitting parameters of a 2-stream plane parallel model.

Satellites observe radiation reflected in their direction whereas climate models need total solar energy
reflected upward in all directions. This distinction has led to the optical properties of vegetation canopies being
represented somewhat differently in climate models than they are in remote sensing. However, the current
trend in meteorological modeling and remote sensing is to generate the remotely sensed signal in the meteo-
rological model and use the difference from that observed to correct the model through data assimilation pro-
cedures. Because of the likely continuation of global terrestrial climate records through instruments on
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meteorological satellites, data assimilation of terrestrial information should be further developed beyond its
current framework for soil moisture [11]. For this purpose, the computation of radiation in climate models
needs to be formulated to reproduce the directional information seen by a satellite. Thus, the question
addressed here is: how can we: (a) compute realistic 3D effects of radiation efficiently enough to be useful
for a climate model; and (b) so that it would also be useful for interpretation of remotely sensed radiation?
Detailed analytic solutions are presented in [12] in the single-scattering limit. The primary concern of this
paper is the development of an analytic approach for the treatment of the additional multi-scattered radiation.

This paper models leaves as homogeneously distributed centers of isotropic scattering. The additional com-
plexities of leaf orientation, scattering asymmetries, or woody components are not addressed. The paper
assumes a spherically shaped cloud of scatters, visualized to be a ‘‘spherical bush” and its component leaves.
‘‘Homogeneous” here refers to a random distribution of leaf locations within the prescribed 3D geometric
object. For 1D models, it refers to such a distribution between two planes.

The mathematical theories of radiative scattering have already extensively developed especially in the con-
text of astrophysics and neutron diffusion where the system-properties differ significantly from those consid-
ered here. In particular, the astrophysical scattering systems are commonly very deep and appropriately
approximated as semi-infinite, whereas the study of neutron scattering has been focused on the issue of ‘‘crit-
icality” where as much or more energy is scattered as is incident. Plant canopies on the other hand are often
optically relatively thin and at most wavelengths their leaves absorb a substantial fraction of the radiation they
attenuate. Thus a different analytic approach for determination of their scattered radiation is needed and con-
tributed to here.

A previous approach, most extensively popularized by Chandrasekehar [13], and Sobelev [14], leads to sim-
ple but nonlinear integral equations whose solution provides the exiting radiation. The approach developed
here is to directly use the linear integral equation that describes the scattering within the interior of an object.

2. Formal operator description

The problem addressed is that of unit radiation entering a 3D object with a discrete or continuous distri-
bution of scattering centers. What fraction of radiation again exits as a function of its exiting direction? The
interactions of the radiation with the leaves are determined in the limit of geometric optics. The direct beam
transmission and the single scattered radiation are derived from simple integrations described in [12] and
briefly summarized in the next sections for their use with the multi-scattered radiation.

The radiation that is attenuated per unit depth at some location within the object is denoted A(x,yz) or
simply A. It corresponds to the local flux intensity multiplied by an optical depth parameter s, i.e., optical
depth per unit distance, and provides a source term for scattered radiation.

The ‘‘formal” operator description of this section is provided to help clarify the structure of multiple scat-
tering before in the next sections addressing concrete formulations for determining such. The equation
assumed to apply for A is that
A ¼ A0 þ xBA; ð1Þ

where B is referred to as the ‘‘bush operator”, and A0 is the attenuation of the direct solar beam. The second
term on the right side is the contribution of radiation that has been attenuated more than once. If A is viewed
as a matrix, then B is another matrix that describes how the elements of A are coupled together by scattering.
The term A0 is constructed by solving some version of the ‘‘Lambert–Bouguet–Beer Law” of exponential de-
cay for all paths along the direction of the entering solar radiation. This ‘‘Law” states that the attenuation per
unit distance of the radiation in a given direction for an infinitesimal increment of path is simply the ‘‘optical
depth”s (c.f., [15, p. 52]). Once we have determined the source term A, the outgoing flux X (in some direction
relative to that of the incident radiation) is constructed from the path of outward scattered photons, i.e.,
X ¼ EA0: ð2Þ

The term E varies with location in the object, and is the exponential decay from that location to a point on the
boundary in the selected direction of exiting radiation. Except for referring to a different direction, it is the
same term as used to determine A0.
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The resolvent bush operator C is simply the expression obtained by solving Eq. (1) in the form:
A ¼ A0 þ xCA0: ð3Þ

If we assume that the operators can be manipulated as scalars,
C ¼ ð1� xBÞ�1
B: ð4Þ
This formal description of the solution for C is more straightforward to flesh out with details when B is a dis-
crete matrix with eigen-vectors. That is, we would like to be able to expand the identity matrix U whose ele-
ments are dij as
U ¼ WTW; ð5Þ

where the matrix W consists of column vectors that are eigen-vectors of B. That is, it satisfies:
BW ¼ KW; ð6Þ

where K is the diagonal matrix dijki and the ki are the eigen-values of B. If this diagonalization can be done, we
can manipulate Eq. (6) to B = WKWT interpreted as a projection into the eigen-space of B, and so determine C
as
C ¼ Wð1� xKÞ�1KWT: ð7Þ

Depending on whether it is described in terms of discrete elements or as a continuum, a given location is con-
nected to all other locations in a given direction by a sum over all these locations or by an integral over paths
in a given direction. The solution represented by Eq. (3) can include in addition any term that satisfies
(U + xC)A = 0. Such ‘‘homogeneous eigensolutions” may be needed to satisfy physical requirements of the
solution.

Besides simply describing the scattering exchange between different locations in a canopy, the B introduced
in Eq. (1) has at least two other interpretations described here in their discrete version: (a) it acts as a corre-
lation matrix; that is if the canopy is exposed to white noise forcing, B will simply describe how radiation at
one point is correlated with radiation at other locations inside the bush. It also is a smoothing matrix. If radi-
ation is applied at one location in the bush, B acts to smear out the radiation over a distance d = 1/s.

3. Continuum unit sphere model

The abstract expressions of the previous section with appropriate details apply to either a discrete or con-
tinuum representation of multiple scattering from a canopy. Although the most realistic viewpoint is that of
discrete leaves, such can only be addressed by Monte-Carlo sampling. Other coarser grained discrete formu-
lations for canopy scattering generally should be derivable from a continuum viewpoint, so to be specific, we
adopt such a viewpoint that is basically probabilistic, i.e., leaves are included by spatial statistical distribu-
tions. As the intent of this study is to isolate the aspects of 3D geometry contributing to canopy scattering,
we make the simplest assumptions about other parameters, in particular that the leaves are homogeneous
in space with isotropic orientations, and furthermore, that they scatter isotropically; that is leaves have a scat-
tering phase function that is a constant, independent of the angle between the incident and reflected photons.
These assumptions allow us to address concrete versions of the abstract problem described in the previous sec-
tion, to establish the geometric controls on the scattering of solar radiation from a distribution of idealized
leaves.

The simplest such geometry to study is that of a sphere. For this geometry, some aspects of the single scat-
tered reflected radiation can be characterized by analytic integrations [12] and these were shown by numerical
computation to be useful for constructing a complete scattering phase function for single scattering. Multiple
scattering was also included, but by use of an approximate expression that does not provide adequate accuracy
except for a thin canopy. The radiation that was attenuated and not lost to single scattering was used as a
uniform source term for the multiple scattering. An objective of the present paper is to establish how the
non-uniform volume spatial distribution of the attenuation of the incident solar radiation creates a non-uni-
form source term for the multiple scattering. The details of this source term involves 3D integrals which are
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difficult to describe and can only be evaluated accurately by numerical computation. However, the abstract
analysis of the previous section and the study of [16] suggest that a simple analytic representation of the multi-
ple-scattering source term may provide an expression with much better accuracy than the uniform source
treatment.

For a continuum, the bush attenuation variable A(r) satisfies an integral equation:
AðrÞ ¼ A0ðrÞ þ x
Z

dr0Aðr0ÞIðr; r0Þ; ð8Þ
where A is as before, the radiation attenuated per unit volume, r is a 3D Cartesian vector (x,y,z), so jr � r0j
will denote the scalar distance between the points r and r0. The kernel I, which with integral is an example of
the abstract bush operator B introduced earlier, describes the modification of radiation emitted from a point
source at r0 and attenuated by exponential decay until it arrives at r. The radiation spreads from the point
source with its intensity proportional to the inverse square of the radial distance from its origin, i.e., the same
as radiation leaving the sun treated as a point source:
I ¼ s expð� j r� r0jsÞ=ð4p j r� r0j2Þ: ð9Þ

The radial spreading term expresses the constancy of the energy flux per unit solid angle in the absence of the
exponential attenuation.

The 3D kernel I as written is not analytically integrable. However, it can be reduced to a sum of terms that
are as follows: it is written as a Laplace integral [17] that has the effect of replacing the jr � r0j2 in its denom-
inator with a jr � r0j,
I ¼ s
Z 1

s
dp expð�pjr� r0jÞ=ð4pjr� r0jÞ: ð10Þ
Although at first blush, seeming to simply complicate Eq. (9), the transform representation Eq. (10) has a ben-
eficial effect for development of an analytic approach to solution. This transform kernel is recognized to be the
solution P(r,p) for a 3D Helmholtz Green’s function equation
½D� p2�P ¼ �dðr� r0Þ; ð11Þ

where D is a 3D Laplacian. Analytic solutions for Eq. (11) are well known for various coordinate systems [18].
Although spherical coordinates might appear to be the most obvious choice, a local system with a Cartesian
metric along the path of entering radiation was shown in [12] to be analytically integrable. The dependence of
these solutions on p is addressed by introducing a numerical integration of Eq. (10). The integration in Eq. (10)
can also be written in terms of another transform variable, q = 1/(sp) which puts it in the form most familiar
for plane parallel systems [13], with q interpreted as the cosine of the angle of the direction of the radiation. It
has been established over the history of radiative transfer research with such systems that a few integration
points, even one (e.g. the classical 2-stream and Eddington approximations [19]), provides useful accuracy
for integration of expressions corresponding to Eq. (10).

Uniform intervals in q appear to provide relatively accurate collocation, corresponding to the 2-stream
and 4-stream models described in [19] and assessed in [6]. For this choice, and for a single integration
point, we assume in Eq. (11) that q = 0.5, and dp = �q�2dq = 4. The resulting approximation is exactly
the same as the commonly used ‘‘diffusion approximation” and corresponds to the physical reasoning that
the 3D radiation can be addressed in a single dimension by allowing for an average cosine projection fac-
tor for the radiation. The factor p = 1/q = 2 provides an exact integration over the directionality of the
radiation only in the limit of small paths. For the plane parallel systems, the exact integration can be
expressed as an exponential integral and various approximations used to put this in a simpler form
(e.g. [10]). Physically, radiation over longer paths becomes more concentrated in the forward direction
such that the effective diffusivity factor ?1 as s ?1. However, for open vegetation canopies, we are
dealing with relatively small vertical optical paths and a 3D structure that acts to greatly weaken the
dependence of path length on the angle of the radiation relative to a normal to the surface. Hence, a dif-
fusivity factor of 2 is expected to provide substantially greater accuracy for integrations over an open 3D
vegetation canopy than that for plane parallel canopy systems. The diffusivity factor of 2 corresponds to
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the two-stream approximation now commonly used in climate models to address details of canopy radi-
ation as a plane parallel system.

The basic complexity of Eq. (8) originates from its inclusion of contributions from all locations within the
unit sphere. In the approximation now to be described, based on the above theoretical arguments, these loca-
tions are connected to a path along that of the incident radiation. Integration over the sphere can be reduced
to integration over a local coordinate as measured from point of radiation entry h as indicated in Fig. 1, cf. [12]
for further discussion. The second coordinate l enters only as a description of the location of the sphere’s
boundary (i.e., l = the cosine of the angle the entering radiation makes with a direction normal to the surface
of the sphere), and the volume integration is done by first integrating in h, then over l where 2ldl is the
sphere’s relative area normal to the path of radiation.

The attenuated radiation A0(h,l) in these coordinates is simply
Fig. 1.
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factors
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A0ðh; lÞ ¼ s expð�hsÞ: ð12Þ

Multiple scattering within the geometry used and leading to downward scattering is illustrated in Fig. 1. The
parameter l enters only in describing the entry point and end point of the local path. We proceed as follows.
First, for the remainder of this section, as a relatively simple and informative result, we develop the second
order scattering contribution to A. The next section shows that with some more mathematical development,
essentially the same approach provides scattering to all orders, i.e., providing a concrete example of the resol-
vent bush operator introduced by Eq. (4).

The second order scattering contribution to A, denoted A2s, and corresponding to substituting A0 in place
of A in the integral in Eq. (8) is now obtained as
A2sðh; lÞ ¼
Z 2l

0

dh0Bðh; h0ÞA0ðh0Þ: ð13Þ
Sketches the geometry of the integration paths over the sphere for forward scattering. The sphere’s axis is normal to the direction
incident radiation. An individual beam enters the sphere at a point where surface normal makes an angle relative to the vertical axis
cosine is l. The column the beam passes through is of length 2l. Along this path, the incident beam travels a distance h0 and then is
ed to some other location in the sphere. The integration path to the other location is approximated by an integration over the initial
n to point h but with the path amplified by a diffusivity factor of 2. This approximation corresponds to a 1 point integration over a
e transform representation of the exact solution. More integration points would produce more terms requiring different diffusivity
. From point h, photons are scattered forward to exit the sphere. The total forward scattering is then provided by integrating such

ns over the scaling parameter l.
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The ‘‘spherical bush kernel” derived with the ‘‘diffusivity approximation” of the theory just described is simply
Bðh; h0Þ ¼ s expð�2sjh� h0jÞ; ð14Þ

providing a 1D approximation to I of Eq. (9). The first derivative of B jumps from 2 for h less than h0 to �2 for
h greater than h0, i.e., a jump of 4 reflecting the definition of a Green’s function multiplied by the earlier men-
tioned factor of 4.

With substitution of Eq. (12) and (14), Eq. (13) integrates to
A2sðh; lÞ ¼ B�ðh; lÞA0ðhÞ; ð15Þ

where
B�ðh; lÞ ¼ 4=3� expð�hsÞ � 1=3 exp½�3ð2l� hÞs�: ð16Þ

In the limit of small s, the right hand side of Eq. (16) reduces to 2l or simply the length of the path of
integration.

In addition to the ‘‘diffusivity” approximation, we also have assumed in obtaining Eq. (14) that in Eq. (11)
the variation of P in directions normal to the path can be neglected, an assumption that is least in error for
scattering paths in the forward and backward directions relative to the initial path. Fortunately, these are the
directions whose integrals are needed to estimate the multi-scattering contribution to the scattering phase
function using the approach of [12], where it was shown that the single-scattering phase function could be con-
structed from a linear combination of that for forward and backward paths. We assume that the higher order
scattering also can be so approximated.

The scattering phase function provided by double scattered radiation is now obtained from Eq. (16) by its inte-
gration over attenuated incoming and outgoing radiation [14]. That is, the scattering phase function in the back-
ward (1) or forward (�1) directions, normalized by division by x2/(4p) and denoted U2s is then obtained from:
U2sð1; sÞ ¼
Z 1

0

2ldl
Z 2l

0

A2
0ðhÞB�ðh; lÞdh; ð17Þ

U2sð�1; sÞ ¼
Z 1

0

2ldl
Z 2l

0

A0ðhÞA0ð2l� hÞB�ðh; lÞdh: ð18Þ
These integrals are readily determined by substituting into them the definitions of A0 and B* from Eqs. (12)
and (16), i.e.,
U2sð1; sÞ ¼
1

3
� T ð2sÞ þ 2

3
T ð3sÞ; ð19Þ

U2sð�1; sÞ ¼ 4

3
U1sð�1; sÞ þ T ð2sÞ þ 1

9
T ð4sÞ � 10

9
T ðsÞ; ð20Þ
where
T ðsÞ ¼ 0:5s�2½1� ð1þ 2sÞ expð�2sÞ�; ð21Þ

is the direct beam transmission, Eq. (7) of [12], and
U1sð�1; sÞ ¼ s�2½1� ð1þ 2sþ 2s2Þ expð�2sÞ� ð22Þ

is the normalized single scatter term, i.e., Eq. (8b) of [12] for forward scatter.

If the terms of Eqs. (19) and (20) are expanded in s, the resulting terms cancel until O(s2) where they sum to
2s2.

The fraction of radiation that is attenuated after scattering is shown in [16] to converge to a constant value
independent of scattering order, and assumed here to be adequately estimated at the second order scattering.
To approximate this limit, we introduce notation for the directionally averaged first and second order scatter-
ing phase functions, i.e., use the bracket symbols h i to denote average over direction of radiation:
hU1si = 0.5[U1s(1,s) + U1s(�1,s)], and hU2si = 0.5[U2s(1,s) + U2s(�1,s)]. The probability of an absorption
after two scatterings pa is obtained as 1 minus the second order scattering divided by 1 minus that escaping
in up to one scattering, i.e.,
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pa ¼ 1� hU2si=½1� T ðsÞ � xhU1si� ð23Þ

From Eqs. (19) and (20), this term is seen to approach 7/9 at large s. At convergence to a constant attenuation
probability, the scattered radiation that escapes is isotropic, i.e., follows from pa independent of outgoing
direction. With these assumptions, the series of higher order scatterings can be summed [16] so that third
and higher order scatterings are added to the second order scattering to estimate the multi-order scattering as
Umsð1; sÞ ¼ U2sð1; sÞ þ xpahU2si=ð1� xpaÞ; ð24Þ
Umsð�1; sÞ ¼ U2sð�1; sÞ þ xpahU2si=ð1� xpaÞ: ð25Þ
The factor hU2si summarizes the product of the escape probability after a second scattering and the absorption
that has occurred during the first two orders of scattering. In the limit of perfect scattering, x = 1, Eqs. (24)
and (25) combined with single scattering reduce to a total scattering phase function of
Uðl; sÞ ! 1� T ðsÞ þ U1sðl; sÞ þ U2sðl; sÞ � hU1si � hU2si: ð26Þ

Fig. 2 shows the multi-order scattering phase function provided by Eqs. (24) and (25). It indicates in particular
that: (a) higher order scattering is negligible out to s � 0.5; (b) scattering is independent of direction out to
The analytic normalized scattering phase function for multiple scattering from a sphere of scatters, i.e., not including the first order
ing, and to be multiplied by x2/(4p) to remove the normalization. The green solid line approximately corresponds to second order
ing, i.e., x = 0. Higher order scattering is assumed independent of direction and estimated by construction of an attenuation
ility from the second order scattering. The solid blue line shows another estimate of the multiple scattering at x = 1 to be compared
e average of the forward and backward scattering at x = 0.99.
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s � 1, but backward is twice or more as large as forward scattering by s � 2. the line labeled ‘‘complete
scattering” shows another approximate expression, Eq. (32), for the average multi-scattering at x = 1. It
agrees with the average of the brown lines at both ends, but is smaller between s of 1 and 2 by several percent.
The relative differences between second order forward and backward scattering are smaller than for first order.
However, the neglect of directionality in the higher order scattering suggests the estimate of the directional
component of scattering (backward minus forward) may be biased low by up to several percent and perhaps
more at the high end of the plot.
4. Obtaining a resolvent kernel for the spherical bush

This section shows how the formal expressions of Section 2 can, in principal, be solved for the scattering to
all orders by solution of the scalar integral equation:
Aðh; lÞ ¼ A0ðh; lÞ þ x
Z 2l

0

Bðh; h0ÞAðh;lÞdh0: ð27Þ
Unfortunately, the exact solutions are apparently too complex to provide the simple algorithms needed for
climate models. However, they suggest some further approximate expressions appropriate to other regions
of parameter space than that given in Eqs. (24)–(26). Although the B(h,h0) could be, in principle, any along
path representation of the I of Eq. (9), we limit the analysis here to the simplest and most approximate version
as given by Eq. (14).The inversion of Eq. (27) to solve for A is, in principle, simple because B is recognized as
the Green’s function for the differential operator D where
D ¼ ½1� ð0:5=sÞ2d2=dh2�; ð28Þ

With some rearrangement, Eq. (27) can be written as
D�ðA� A0Þ ¼ xA0; ð29Þ

where
D� ¼ ½1� x� ð0:5=sÞ2d2=dh2�; ð30Þ

provides the eigen-functions of the bush integral equation, i.e.,
Cð�hÞ ¼ exp½�2ð1� xÞ1=2hs�: ð31Þ

The integral equation is inverted by constructing a combination of these eigen-functions that satisfy the con-
dition of outgoing fluxes at the boundaries. Only in the large s limit are the details simple enough to be inte-
grated over the sphere and so are not provided here since they can also be constructed from the more familiar
‘‘two-stream” model solutions (e.g. [19]). The physical interpretation of the integral equation formulation is
that incident radiation is attenuated and transferred from the location of initial attenuation to another loca-
tion where it undergoes its last scattering and exits. The transfer occurs with many scatters whose net atten-
uation is described by exponential decay with the eigen-function structure. The exiting forward scattered
radiation is dominated by these eigen-functions but that in backward direction contains a strong dependence
on the entering and final exiting path, i.e., as provided by a modified version of the single-scattering result. A
simple result is possible in the limit of (1 � x)1/2s small. In this limit, the transfer along the eigen-function is
with negligible attenuation so that significant attenuation only occurs for the entering and exiting photons.
Consequently,
Umsðl; sÞ � ð1� 2T ðsÞ þ T ð2sÞÞ � hU1si ð32Þ

which satisfies Ums(l,s) ? 2s2 as s ? 0 and ?1, s ?1. The second factor corrects for the loss to single scat-
tering. We have not included a backward–forward asymmetric contribution that will become increasingly sig-
nificant with large T. Fig. 2 compares this term with the forward and backward multiple scattering as a
function of s for the two approximate expressions Eqs. (24,25). At small values of x, all these plots are
approximated by Eqs. (19) and (20) for second order scattering.
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The complete backward and forward scattering phase functions W(1,s) and W(�1,s) are constructed as
Wð1; sÞ ¼ ðx=4pÞ½U1sð1; sÞ þ xUmsð1; sÞ�; ð33Þ
Wð�1; sÞ ¼ ðx=4pÞ½U1sð�1; sÞ þ xUmsð�1; sÞ�; ð34Þ
where Ums(1,s) is constructed from Eq. (24) or (32), Ums(�1,s) from Eq. (25) or (32), U1s(�1,s) from Eq. (22)
and U1s(1,s) is derived in [12] as
U1sð1; sÞ ¼ 0:5½1� T ð2sÞ�: ð35Þ

The scattering for any angle, h = cos�1g, between incoming and outgoing radiation is obtained from [12] as
Wðg; sÞ ¼ 0:5½ð1þ gÞWð1; sÞ þ ð1� gÞWð�1; sÞ�: ð36Þ
5. Discussion

Higher order scattering by a spherical bush involves 3D exchange integrals. With a Laplace transform rep-
resentation, these integrations can be approximated by 1D integrals over exponentials along the paths of
entering and exiting radiation. These integrations depend on the location in the sphere where the radiation
enters. For simple enough dependences on this location, the integrations over the sphere can be done exactly.
This approach yields results for second order scattering in terms of simple analytic expressions.

The analytic expressions for second order scattering are used to develop an approximate estimate for the
higher order scattering. Although doubtful in detail for near perfect scattering, it approaches the correct limit
of conservative scattering. Solutions to all orders of scattering can be constructed from eigen-functions of the
scattering integral equation. The detailed expressions we found were too complicated for the intended use in
climate models. However, this approach is useful for development of more approximate expressions in the
limit of near perfect scattering. One simple such expression is presented, Eq. (32), that is qualitatively similar,
but differs in detail from that obtained as Eq. (26) from the second order scattering approach. Such conser-
vative scattering is of more interest for clouds than bushes, which also involve strongly anisotropic scattering,
and so was not pursued further here.

Eq. (36) is simply integrated over view angle to provide albedo of an isolated spherical bush. From the pre-
vious quantification of the single-scattering error in [12], the numerical estimation errors are believed to be
smaller than those introduced by physical modeling assumptions. The assumption of a sphere can be modified
in various ways. All the results derived here can be mapped to a spheroid. The scattering over paths through a
sphere are integrable because the vertically projected area for a given distance through the sphere is distributed
as a polynomial P(l) in the scaling distance l, and the arguments of exponentials depend linearly on this scal-
ing distance. Any other geometric shape can be similarly characterized, e.g. a cone has the same distribution as
a sphere except weighted toward shortest rather than longest path For complex geometries, the fitting could be
done by using Monte-Carlo sampling to determine a histogram of optical paths through the object and fitting
a low order polynomial to the inferred distribution of paths. Such analyses only provides scattering along the
forward and backward paths, and how these should be averaged to estimate scattering in other directions will
depend on geometric details and needs to be established for each case. The formalism of Sections 2 can be used
for guidance in any such example. More complicated dependences on the scaling distance, e.g. polynomials in
the denominators, do not reduce to anything simpler than exponential integrals, e.g. as illustrated by the
example in [10].

6. Conclusions

The purpose of this analysis has been to develop a simple approach for determining the reflection of solar
radiation from a surface that includes 3D canopy objects. These objects are referred to as bushes and located
within the bush is a homogeneous distribution of individual elements scattering isotropically. This approach is
intended to provide reflected radiation both for a climate model and as seen by remote sensing instruments so
it is necessary to derive the parameters needed by a climate model from the ‘‘optical properties” of the bush.
These properties can be combined with the reflectance of the underlying soil and reflections from neighboring
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bushes to fully characterize the partitioning of solar radiative heating between the different such components
and the back-reflection to the atmosphere, i.e., the albedo. Analytic solutions are developed in this paper for a
sphere of scattering whose optical properties depend only on the optical depth along a radius, the single-scat-
tering albedo of the leaves, and the angle between incoming and outgoing radiation, i.e., sun and view angles.
These solutions can be combined with parameterizations for exchanges of radiation between neighboring
bushes and underlying soil to construct a 3D description of the land surface radiative properties.
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